DYNAMIC STABILITY OF WAVE PROCESSES OF A ROUND ROD

Авторы

  • Seitmuratov Angisin
  • Zhussipbek Botagoz Kunibekkyzy
  • Sydykova Gulnar
  • Ainur Seitkhanova
  • Aitimova Ulzada Zholdasbekovna

Ключевые слова:

oscillations, stability, wave process, axisymmetric problems, round rod, exponential transformation, shear stress.

Аннотация

This paper is devoted to the study of the stability dynamics of wave processes of flat and circular
elements, and also some axisymmetric problems of oscillation of an elastic layer limited by rigid or deformable
boundaries when exposed to normal or rotational shear stresses are considered. Solutions to the problems under
consideration were obtained using integral transformations by coordinate or time. The work develops the dynamic
stability of a round rod. The loss of stability of a round rod will be investigated on the basis of the mathematical
theory and the transverse oscillations of a round rod, described in the work of I.G. Philippov.

Загрузки

Опубликован

2019-04-10

Как цитировать

Seitmuratov Angisin, Zhussipbek Botagoz Kunibekkyzy, Sydykova Gulnar, Ainur Seitkhanova, & Aitimova Ulzada Zholdasbekovna. (2019). DYNAMIC STABILITY OF WAVE PROCESSES OF A ROUND ROD. Известия НАН РК. Серия физико-математическая, (2), 90–98. извлечено от http://189185.vm7pq.group/physics-mathematics/article/view/1183