INVERSE PROBLEM OF A STURM-LIOUVILLE OPERATOR WITH NON-SEPARATED BOUNDARY VALUE CONDITIONS AND SYMMETRIC POTENTIAL

Авторы

  • Shaldanbayev A.Sh
  • A.A. Shaldanbayeva
  • B.A. Shaldanbay

Ключевые слова:

Sturm - Liouville operator, spectrum, Sturm - Liouville inverse problem, Borg theorem, Ambartsumian theorem, Levinson theorem, non-separated boundary value conditions, symmetric potential, invariant subspaces.

Аннотация

In this paper we prove a uniqueness theorem, in a single spectrum, for the Sturm-Liouville operator
with non-separated boundary value conditions and real continuous and symmetric potential. The research method is
different from all known methods, and based on internal symmetry of the operator generated by invariant subspaces.

Загрузки

Опубликован

2019-10-10

Как цитировать

Shaldanbayev A.Sh, A.A. Shaldanbayeva, & B.A. Shaldanbay. (2019). INVERSE PROBLEM OF A STURM-LIOUVILLE OPERATOR WITH NON-SEPARATED BOUNDARY VALUE CONDITIONS AND SYMMETRIC POTENTIAL . Известия НАН РК. Серия физико-математическая, (5), 59–69. извлечено от http://189185.vm7pq.group/physics-mathematics/article/view/1659