SOLITON DEFORMATION OF INVERTED CATENOID

Авторы

  • D. Kurmanbayev Al-Farabi Kazakh National University, Almaty, Kazakhstan;
  • K. Yesmakhanova L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan

Ключевые слова:

Modified Veselov-Novikov equation, Dirac operator, Gauss maps, height differential, stereographic projection, soliton deformation, Moutard transformations, catenoid.

Аннотация

The minimal surface (see [1]) is determined using the Weierstrass representation in three-dimensional
space. The solution of the Dirac equation [2] in terms of spinors coincides with the representations of this surface
with conservation of isothermal coordinates. The equation represented through the Dirac operator, which is included
in the Manakov’s L, A, B triple [3] as equivalent to the modified Veselov-Novikov equation (mVN) [4].

Загрузки

Опубликован

2021-04-15

Как цитировать

Kurmanbayev, D., & Yesmakhanova, K. (2021). SOLITON DEFORMATION OF INVERTED CATENOID. Известия НАН РК. Серия физико-математическая, (2), 24–32. извлечено от http://189185.vm7pq.group/physics-mathematics/article/view/282